埃及古代數學
來源:高中數學網 2008-05-07 18:11:48

埃及是世界上文化發達最早的幾個地區之一,位于尼羅河兩岸,公元前3200年左右,形成一個統一的國家。尼羅河定期泛濫,淹沒全部谷地,水退后,要重新丈量居民的耕地面積。由于這種需要,多年積累起來的測地知識便逐漸發展成為幾何學。
公元前2900年以后,埃及人建造了許多金字塔,作為法老的墳墓。從金字塔的結構,可知當時埃及人已懂得不少天文和幾何的知識。
例如基底直角的誤差與底面正方形兩邊同正北的偏差都非常小。現今對古埃及數學的認識,主要根據兩卷用僧侶文寫成的紙草書;一卷藏在倫敦,叫做萊因德紙草書,一卷藏在莫斯科。
埃及最古老的文字是象形文字,后來演變成一種較簡單的書寫體,通常叫僧侶文。除了這兩卷紙草書外,還有一些寫在羊皮上或用象形文字刻在石碑上和木頭上的史料,藏于世界各地。兩卷紙草書的年代在公元前1850~前1650年之間,相當于中國的夏代。
埃及很早就用十進記數法,但卻不知道位值制,每一個較高的單位是用特殊的符號來表示的。例如111,象形文字寫成三個不同的字符,而不是將1重復三次。埃及算術主要是加法,而乘法是加法的重復。他們能解決一些一元一次方程的問題,并有等差、等比數列的初步知識。占特別重要地位的是分數算法,即把所有分數都化成單位分數(即分子是1的分數)的和。萊因德紙草書用很大的篇幅來記載2/N(N從5到101)型的分數分解成單位分數的結果。為什么要這樣分解以及用什么方法去分解,到現在還是一個謎。這種繁雜的分數算法實際上阻礙了算術的進一步發展。
紙草書還給出圓面積的計算方法:將直徑減去它的1/9之后再平方。計算的結果相當于用3.1605作為圓周率,不過他們并沒有圓周率這個概念。根據莫斯科紙草書,推測他們也許知道正四棱臺體積的計算方法。總之,古代埃及人積累了一定的實踐經驗,但還沒有上升為系統的理論。
相關文章
- 小學1-6年級作文素材大全
- 全國小學升初中語數英三科試題匯總
- 小學1-6年級數學天天練
- 小學1-6年級奧數類型例題講解整理匯總
- 小學1-6年級奧數練習題整理匯總
- 小學1-6年級奧數知識點匯總
- 小學1-6年級語數英教案匯總
- 小學語數英試題資料大全
- 小學1-6年級語數英期末試題整理匯總
- 小學1-6年級語數英期中試題整理匯總
- 小學1-6年語數英單元試題整理匯總