奧數 > 小學資源庫 > 教案 > 小學數學教案 > 六年級數學下冊教案 > 正文
2009-07-27 10:09:41 下載試卷 標簽:六年級 蘇教版 統計 數學
教學內容:教科書80~81頁例3、例4,完成隨后的“練一練”及練習十六第2、3題
教學目標:
1、使學生結合具體實例,初步理解中位數的意義,會求一組簡單數據的中位數,能根據具體問題選擇合適的統計量表示一組數據的整體特征。
2、使學生能在初步理解中位數的過程中,進一步體會數據對于分析問題、解決問題的作用,感受與同學交流的意義和樂趣,發展統計觀念。
教學重難點:選擇適當的統計量表示有關數據的特征
教學準備:實物投影
一、教學例3
1、出示例3
問:觀察這組數據,說說自己的看法。
追問:你認為7號男生的成績在這組同學中處于什么位置?
啟發:要解決這個問題,你有哪些辦法?
可以算出平均數,用7號男生的成績與平均數進行比較,也可以按一定的順序把這組男生的成績重新排一排,看7號男生的成績是第幾名。
提問:為什么7號男生的成績比平均數少,卻還排在第三名?你認為用平均數代表這組男生跳繩的整體水平合適嗎?
指出:為了更好的表示這組數據的整體水平,我們需要認識一種新的統計量----中位數。(板書課題)
2、提出要求:你能把這組數據按從大到小或從小到大的順序重新排一排嗎?
學生按要求各自排一排
引導:這組數據一共有幾個?處于正中間位置的是哪個數據?“102”前面有幾個數據?后面呢?
指出:這組數據正中間的一個數是102,102是這組數據的中位數。
進一步指出:平均數、眾數、中位數都是統計量。它們都可以用來表示一組數據的特征。
提問:把7號男生的成績與中位數比較,你覺得該生的成績怎么樣?
3、啟發:現在你認為是用中位數表示這組數據的整體特征合適,還是用平均數表示合適?說說你的理由。
學生交流后小結:因為這組數據中只有兩個數據的水平高于平均數,而有7個數據的水平低于平均數,平均數明顯偏離這組數據的中心位置,所以平均數不能代表大多數據的水平,因而是不合適的。
追問:你知道這組數據的平均數為什么會比中位數高得多嗎?
仔細觀察這9個數據,哪個數據顯得特別?
小結:平均數之所以遠遠高于中位數,是因為9個數據中有兩個數遠遠大于其他的數。
二、教學例4
1、出示例4
提出要求:你會求這組數據的中位數嗎?自己試一試。
學生有困難時提問:這組數據一共有多少個?處于正中間位置的有幾個數據?正中間有兩個數據時,中位數怎么求?
學生討論后指出:正中間有兩個數的,中位數就是這兩個數的平均數。
2、組織討論:同中位數比,10號女生的成績怎么樣?其他女生呢?
三、完成“練一練”
1、要求學生獨立求出這組數據的平均數和中位數。
2、組織討論:用哪個統計量代表這組同學家庭住房的整體水平比較合適?
學生討論后小結:因為低于平均數只有兩個數據,而高于平均數的卻有7個數據,所以平均數不能代表大多數數據的水平,也就不能代表這組數據的整體水平。
3、啟發思考:這組數據的平均數為什么會比中位數低得多?
學生討論后,小結:因為這組數據中有兩個數遠遠小于其他的數,所以造成平均數比中位數低得多。
三、鞏固練習
1、做練習十六第2題
(1)讓學生分別求出表中八架飛機飛行時間的平均數和中位數。
(2)討論:用哪個數據代表這八架飛機的飛機時間比較合適?
(3)讓學生小組合作完成第(3)題,學生完成后組織討論。
2、做練習十六第3題
先讓學生分別算出這組數據的平均數、中位數和眾數,再組織學生討論第(2)題中的問題。
四、小結
這節課你又認識了什么統計量?你認為中位數和平均數在表示一組數據整體特征方面有什么不同?
五、課堂作業
補充習題相關練習
課前思考:
4月25日在蘇州聽到一節課,現將有關與教材有改動或變化的內容提供給大家參考.
1、將例題改為7個教師跳繩數據,分別是:238、107、105、102、100、95、93。
2、在得到中位數后讓學生體會中位數102和平均數120誰更具有代表性,教師是這樣引導的:觀察圖表,(1)比120多5下或少5下的有幾人?(沒有),那么比102多5下或少5下的有幾人?(4人);(2)比120多10下或少10下的有幾人?(沒有),那么比102多10下或少10下的有幾人?(6人)所以用哪個數代表7位老師的普遍數據更具有代表性?從而得出:在數據比較少,且有極端數據的情況下,極端數據對平均數的影響比較大,用中位數代表這組數據的普遍情況更合適。
3、將極端數據再調大些、調小些,引導學生分析:平均數變了嗎?中位數呢?發現極端數據對什么有影響?對什么沒有影響?
4、分析歌曲比賽打分方法,理解為什么通常采用去掉一個最高分、一個最低分的方法?在統計誰唱得更好些時,為什么用平均數而不用中位數?
5、介紹了運動比賽中,跳遠的成績不用平均數,也不用中位數,一般采用取最高成績的方法來評判誰的成績最好。
課前思考:
這一內容的教學最大難點就是讓學如何明確什么時候用中位數說明一組數據的整體的水平。
要弄清,什么時候用中位數,往往是一組數據中出現一兩個相當高的數或一二兩個相當低數是而讓平均數發生偏離中心,這時可以用中位數來代替分析數據。當然為了更合理一點,我們應以平均數為依據,當平均數明顯偏離中心時(也就是,看平均數在一組中的位置,是明顯靠前了,還是靠后了)我們就可考慮用中位數來代替數據的分析。
課后反思:
對于中位數這一概念學生應該很好理解,在教學例2的過程中,在按從大到小的順序排列之后,我指出正中間的那個數叫做這組數據的中位數時,就有學生提出了問題:“老師,如果正中間正好有兩個數怎么辦?”有學生說就求這兩個數的平均數啊。令我有些意外,其實有些學生的思維還是很活躍的,平時一直低估了他們。考慮了一下,還是按照教學設計進行下去,就對學生說接下去我們就馬上研究這個問題。
在算出中位數之后,也可以適當的總結一下,如果數據的個數是奇數,中位數就是正中間的那個數,如果數據的個數是偶數,中位數就是中間兩個數的平均數。求中位數的方法學生基本都能掌握。
但在實際過程中讓學生判斷用哪個統計量最具代表性的話,很多學生都會有困難。關鍵是要讓學生比較平均數、中位數、眾數和整體一組數據有何差距。通常情況下,看平均數是否具有代表性,主要看它是否代表大部分數據的水平;看中位數是否具有代表性,看它兩側的數據大小是否均衡。
課后反思:
例題根據高教導提供的內容進行了修改。調大或調小(增加或減少)一個數后,平均數一般會變化。中位數、眾數也可能發生變化,我們有時先去掉一兩個不合理的數據——就如練習十六的第2題的最后一問,去掉A再計算看用這個平均數合適表示整個的水平合適嗎?這樣的問題有必要,像一些比賽的打分為了合理,都是去掉一個最高分和一個最低分后算平均分的。第2題只是去掉了一個最低的,算得的平均數與原來的中位數就很接近了,這時的平均分數很合理。有時平均數和中位數都比較合理的情況也是有的,當然主要還是當平均數明顯偏離中心時,我們就考慮到用眾數或中位數。
課后反思:
因為正在上課之前學習了高教導寫的“課前思考”,很受啟發。我也采用了高教導提供的例題進行了中位數的教學,這一組數據中因為出現了兩個極端數據,所以在計算平均數后發現平均數是120,而7人中有6人低于平均數,所以學生們都感到這時用平均數來表示7位教師跳繩的平均水平不合適。這樣就產生了解決問題的愿望,揭示了中位數后我再次讓學生思考7個數據中哪些數據接近中位數,結果學生們發現有6個數據很接近中位數,所以一致認為用中位數比較合適。隨后,也借鑒高教導補充的問題我把極端數據再改大和改小讓學生計算平均數和中位數。這時,學生們發現平均數很容易受極端數據的影響,而中位數不會受極端數據的影響。接著我再向學生做了補充說明:一般情況下,如果一組數據中出現了一些極端數據,這時考慮用眾數或中位數來說明整體水平比較合適,而一組數據中的數據如果都比較接近,沒有極端數據出現,這時用平均數來表示整體水平比較合適。
課前思考:
有這樣一個問題情境:有一群平均年齡為17歲的游客,他們正準備去漂流,如果你是他們的導游,你覺得可以嗎?讓學生各抒己見后,教師揭示游客的實際年齡:6歲、6歲、7歲、8歲、10歲、12歲、70歲。我想這個較為特殊的例子可以讓學生感受到平均數有時會受到極端數據的影響,有時不能很好地反映一組數據的整體水平,這時就需要研究眾數和中位數。
能解釋平均數、中位數和眾數的實際意義并能根據具體的問題,選擇適當的統計量表示一組數據的特征應該是學生學習中的難點。結合練習十六的第3題的教學,我們可以重點組織學生討論第2小題,讓學生理解因為這組數據中,低于平均數的有7個數據,所以平均數不能代表這組數據的整體水平。而中位數兩側的數據大小也不夠均衡,所以用眾數表示這組數據的整體水平比較合適。
歡迎掃描二維碼
關注奧數網微信
ID:aoshu_2003
歡迎掃描二維碼
關注中考網微信
ID:zhongkao_com