奧數 > 小學資源庫 > 教案 > 小學數學教案 > 四年級數學下冊教案 > 正文
2009-08-11 19:39:26
[背景與導讀]:“三角形三邊的關系”是人教版課程標準實驗教材四年級下冊“三角形”中的第三課時,該課時是在學生初步了解了三角形的定義的基礎上,進一步研究三角形的特征,即三角形任意兩邊的和大于第三邊。三角形三邊關系定理不僅給出了三角形三邊之間的大小關系,更重要的是提供了判斷三條線段能否組成三角形的標準,熟練靈活地運用三角形的兩邊之和大于第三邊,是數學嚴謹性的一個體現,同時也有助于提高學生全面思考數學問題的能力,它還將在以后的學習中起著重要的作用。教學中,教師根據小學生喜歡玩的天性,首先設計讓學生搭建三角形的動手操作活動,使學生一開始就進入學習狀態,同時也可產生認知沖突,為后面的學習鋪好路。在教師的引導下,當學生發現三角形三邊的關系后,教師這時再出示書上的一組數據讓學生判斷,訓練學生靈活運用知識的能力,接下來教師出示書上的情景圖,讓學生學會運用知識解決實際問題,這一環節的設計,主要是引導學生學會看書,畢竟書本是我們學習最直接的資料之一,我們應好好的加以運用。本節課的后半部主要是出示一些實際問題,讓學生在解決問題地過程中理解、掌握本節課的重點。
[片斷一]:動手操作,產生問題
師:前面我們已經認識了三角形,知道三角形是由三條線段首尾相連圍成的封閉圖形,今天,老師想讓同學們利用你們桌上的木條親手搭建一個個的三角形,要求是每個三角形只能用三根木條,你們想不想試一試?
學生:想!
師:下面請同學們分小組開始活動。
(學生分小組活動)
師:每個小組利用桌上的六根木條共搭建了幾個三角形?
學生:我們搭建了一個三角形。
師:剩下的三根木條能搭建成一個三角形嗎?
學生:不能。
師:你們知道剩下的三根木條為什么不能搭建成一個三角形嗎?你發現了什么?
學生1:我發現剩下的三根木條怎么連也連不到一起。
學生2:我們也是這樣的。
師:“剩下的三根木條怎么連也連不到一起”說明了這三邊在長短上有某種關系,你們能找出這三邊在長短上有什么樣的關系嗎?
學生1:我們將較短的兩根木條連接在一起與最長的一根木條相比較,發現較短的兩根木條和起來還沒有另外一根木條長。
學生2:我們把較短的兩根木條連接在一起與最長的一根木條相比較,發現較短的兩根木條和起來不是沒有另外一根木條長,而是同另外一根一樣長。
學生3:我們發現的結論與學生(1)相同,我們是通過用直尺分別度量這三根木條的長度,再計算、比較后發現的。
學生4:我們發現的結論與學生(2)相同,我們也是通過用直尺分別度量這三根木條的長度,再計算、比較后發現的。
師:下面我們將能拼成三角形的三邊分開,象上面一樣比較一下這三條邊在長度方面有什么關系?
(學生活動后匯報)
學生1:我發現較短的兩條邊加起來比最長的一條邊長,同剛才的結論正好相反。
學生2:我發現我這個三角形的任意兩邊加起來的和都比第三邊長。
學生3:我的發現同學生(2)一樣,也是這個三角形的任意兩邊加起來的和都比第三邊長。
學生4:“任意兩邊”是什么意思?我不太懂。
學生5:“任意兩邊”就是指三角形三邊中的每兩條邊加起來的長度都比剩下來的第三條邊的長度長。
學生4:原來是這樣的。
(學生都有同感)
學生6:也就是說,任意一個三角形,它的三條邊都存在這樣一個特征:三角形的任意兩邊之和都大于第三邊。
學生7:我想應該是這樣的吧。因為我們的三角形不一樣,但我們得到的結論都是一樣的。
學生8:我看到書上也有同樣的結論。
(學生都翻書看)
[反思]:蘇霍姆林斯基曾說:“在人的心理深處都有一種根深蒂固的需要,這就是希望自己是一個開拓者、研究者和探索者。而在兒童的精神世界中,這種需要特別強烈。”教學中,教師有意設置這些動手操作,共同探討的活動,既滿足了學生的這種需要,由讓學生在高昂的學習興趣中學到了知識,體驗到了成功。
[片斷二]:及時練習,形成能力
師:同學們剛才表現得非常棒,你們棒在不僅愛玩,而且能在玩中發現數學問題,通過自己的思考、探討,你們也能解決問題。這就是我們今天一起學習的三角形的另外一個特征,現在你能運用三角形三邊的關系判斷給出的三條邊能否組成一個三角形嗎?
學生:能!
師:請同學們翻書到第86頁,自己獨立做第4題。
(學生做完后匯報展示,并說明判斷的方法)
學生1:(1)、(2)、(4)這三組中的線段能拼成一個三角形,(3)中的線段不能拼成一個三角形,我是把每組中的三條線段兩兩相加,再與剩下的第三條線段相比較,其中(1)、(2)、(4)這三組中的線段每兩條線段之和都大于第三條線段,所以它們能拼成一個三角形,而(3)中2+2〈6,所以這組中的三條線段不能拼成一個三角形。
學生2:我的結論同學生(1)一樣,但我的判斷方法與他不同,我是先找出較短的兩條邊,比較它們的和與剩下的第三條邊的大小,如果和大一些,則能拼成三角形,如果和小一些,則不能拼成三角形。
學生3:學生(2)的方法只是一種巧合,他沒有判斷任意兩邊之和大于第三邊,所以這種方法不行。
(學生對學生(2)的方法產生了爭論,學生討論一會兒后)
學生4:學生(2)的方法是對的,因為較短的兩條邊之和如果大于第三條邊,則說明任意一條較短的邊與最長的一邊之和肯定大于第三條邊,這也就更進一步說明這個三角形的任意兩邊之和大于第三邊。
學生5:看來在判斷某三條邊能否拼成一個三角形時,用學生(2)的方法既快又對。
[反思]:課堂練習的目的是為了讓學生及時掌握知識,形成能力。教學中老師充分注意到了這一點,即讓學生用所學內容來說明為什么這一環節。同時我們也欣喜地發現,通過練習,學生還在原來所學內容的基礎上,對原知識又有發展,找到了最佳的判斷方法。學生的能力不可限量啊!
[片斷三]:結合實際,學會運用
師:通過剛才的練習,你們不僅掌握了判斷某三條邊能否拼成一個三角形的方法,并且還找出了最佳的判斷方法。從這里可以看出,只要同學們肯動腦思考,一定會取得令人滿意的結論。下面請同學們觀察小明上學示意圖(電腦出示書第82頁示意圖),如果小明想走離學
歡迎掃描二維碼
關注奧數網微信
ID:aoshu_2003
歡迎掃描二維碼
關注中考網微信
ID:zhongkao_com