學而思奧數天天練欄目每日精選一套高等難度的試題,各年級分開,配有詳細答案及試題解析,此類試題立足于杯賽真題、綜合應用和加深各知識點,適合一些志在競賽中奪取佳績的學生。
·本試題由武漢學而思奧數全職教師王帥精選、解析,以保證試題質量

名師介紹: 王老師對學生非常有愛心和耐心,善于調動學生學習的積極性,抓住學生思路和心理,引導學生思考,鍛煉孩子自己動腦解決問題的能力,在講課中能及時與每個學生溝通,善于發現每個孩子身上的優點,幫助他們建立學習興趣和信心,培養他們嚴密的邏輯思維能力,找到適合每個孩子自己的學習方法,用生動有趣的語言配合細致的講解,帶領孩子們一步步成長。教學特色: 從事奧數教學五年,深受學生和家長喜歡。所輔導學員多人在"創新杯"、"希望杯"、"華杯賽"、"走美"等大賽中獲一、二、三等獎項,并且熟悉武漢小升初的政策,總能給家長和學員以針對性的指導,歷年輔導學員百人考入重點中學。
·每道題的答題時間不應超過15分鐘
·您可以按“點擊下載適合打印版本試卷”獲得word版本試卷進行打印
一年級答案:
利用數的奇偶性判斷,不用計算就可知道這筆賬算錯了。因為1支鉛筆的價錢8分是個偶數,另外,不論橡皮和練習本的價錢是多少,2塊橡皮,以及2個練習本的錢也都是偶數,所以小華應付的總錢數應當是個偶數,他付了1元即100分,售貨員找回的錢數也應是個偶數。但售貨員叔叔實際找給他的5分是個奇數,所以小華說售貨員把這筆賬算錯了,可見小華并不需要計算,只是根據奇偶性進行判斷,就知道這筆賬算錯了。
二年級答案:
將1~9的九個自然數從小到大排成一列:
1,2,3,4,5,6,7,8,9.
分析先看最小的1和最大的9相加之和為10不符合要求.
但用次大的2和最大的9相加,和為11符合要求,得11=2+9.
逐個做下去,可得11=3+8,11=4+7,11=5+6.
可見共有4種不同的寫法.
三年級答案:
解:每一層樓梯有:36÷(3-1)=18(級臺階)晶晶從1層走到6層需要走:18×(6-1)=90(級)臺階。答:晶晶從第1層走到第6層需要走90級臺階。
四年級答案:
解:由1、2、3、4、5、6共可組成3×4×5×3=180個沒有重復數字的四位奇數.
五年級答案:
首先根據丙說的話可以推知,丁必能獲獎.否則,假設丁沒獲獎,那么丙也沒獲獎,這與"他們之中只有一個人沒有獲獎"矛盾。
其次考慮甲是否獲獎,假設甲能獲獎,那么根據甲說的話可以推知,乙也能獲獎;再根據乙說的話又可以推知丙也能獲獎,這樣就得出4個人全都能獲獎,不可能.因此,只有甲沒有獲獎。
六年級答案:
【分析】三人三槍中靶環數之積均為60,即每人每槍中靶環數均為60的約數。將60分解質因數為60=2×2×3×5,又因為每槍環數不超過10,所以將60寫成三個不超過10的自然數的乘積有且只有以下四種情況:
60=3×4×5;60=2×6×5;60=2×3×10;60=1×6×10.
其中總環數分別為12,13,15,17,出現4環的情形①總環數最少,所以4環是丙打的。
更多奧數練習 >>