日韩av无码久久一区二区-日韩av无码社区一区二区三区-日韩av无码一区二区三区-日韩av无码一区二区三区不卡-日韩av无码中文无码不卡电影-日韩av无码中文无码电影

奧數(shù)網(wǎng)
全國(guó)站

奧數(shù) > 小學(xué)資源庫(kù) > 奧數(shù)知識(shí)點(diǎn) > 數(shù)論問題 > 整數(shù)拆分 > 正文

六年級(jí)奧數(shù)課堂:整數(shù)問題之一(7)

2011-10-20 17:57:57      下載試卷

  例 21 191997被7除余幾?

  解:從上面的結(jié)論知道,191997被7除的余數(shù)與21997被7除的余數(shù)相同.我們只要考慮一些2的連乘,被7除的余數(shù).

  先寫出一列數(shù)

  2,2×2=4,2×2×2 =8,

  2×2×2×2=16,….

  然后逐個(gè)用7去除,列一張表,看看有什么規(guī)律.列表如下:

 

  事實(shí)上,只要用前一個(gè)數(shù)被7除的余數(shù),乘以2,再被7除,就可以得到后一個(gè)數(shù)被7除的余數(shù).(為什么?請(qǐng)想一想.)

  從表中可以看出,第四個(gè)數(shù)與第一個(gè)數(shù)的余數(shù)相同,都是2.根據(jù)上面對(duì)余數(shù)的計(jì)算,就知道,第五個(gè)數(shù)與第二個(gè)數(shù)余數(shù)相同,……因此,余數(shù)是每隔3個(gè)數(shù)循環(huán)一輪.循環(huán)的周期是3.

  1997= 3× 665 + 2.

  就知道21997被7除的余數(shù),與21997 被 7除的余數(shù)相同,這個(gè)余數(shù)是4.

  再看一個(gè)稍復(fù)雜的例子.

  例22 70個(gè)數(shù)排成一行,除了兩頭的兩個(gè)數(shù)以外,每個(gè)數(shù)的三倍都恰好等于它兩邊兩個(gè)數(shù)的和.這一行最左邊的幾個(gè)數(shù)是這樣的:

  0,1,3,8,21,55,….

  問:最右邊一個(gè)數(shù)(第70個(gè)數(shù))被6除余幾?

  解:首先要注意到,從第三個(gè)數(shù)起,每一個(gè)數(shù)都恰好等于前一個(gè)數(shù)的3倍減去再前一個(gè)數(shù):

  3=1×3-0,

  8=3×3-1,

  21=8×3-3,

  55=21×3-8,

  ……

  不過,真的要一個(gè)一個(gè)地算下去,然后逐個(gè)被6去除,那就太麻煩了.能否從前面的余數(shù),算出后面的余數(shù)呢?能!同算出這一行數(shù)的辦法一樣(為什么?),從第三個(gè)數(shù)起,余數(shù)的計(jì)算辦法如下:

  將前一個(gè)數(shù)的余數(shù)乘3,減去再前一個(gè)數(shù)的余數(shù),然后被6除,所得余數(shù)即是.

  用這個(gè)辦法,可以逐個(gè)算出余數(shù),列表如下:

 

  注意,在算第八個(gè)數(shù)的余數(shù)時(shí),要出現(xiàn)0×3-1這在小學(xué)數(shù)學(xué)范圍不允許,因?yàn)槲覀兦蟊?除的余數(shù),所以我們可以 0×3加6再來(lái)減 1.

  從表中可以看出,第十三、第十四個(gè)數(shù)的余數(shù),與第一、第二個(gè)數(shù)的余數(shù)對(duì)應(yīng)相同,就知道余數(shù)的循環(huán)周期是12.

  70 =12×5+10.

  因此,第七十個(gè)數(shù)被6除的余數(shù),與第十個(gè)數(shù)的余數(shù)相同,也就是4.

  在一千多年前的《孫子算經(jīng)》中,有這樣一道算術(shù)題:

  “今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二,問物幾何?”按照今天的話來(lái)說(shuō):

  一個(gè)數(shù)除以3余2,除以5余3,除以7余2,求這個(gè)數(shù).

  這樣的問題,也有人稱為“韓信點(diǎn)兵”.它形成了一類問題,也就是初等數(shù)論中解同余式.這類問題的有解條件和解的方法被稱為“中國(guó)剩余定理”,這是由中國(guó)人首先提出的.目前許多小學(xué)數(shù)學(xué)的課外讀物都喜歡講這類問題,但是它的一般解法決不是小學(xué)生能弄明白的.這里,我們通過兩個(gè)例題,對(duì)較小的數(shù),介紹一種通俗解法.

  例23 有一個(gè)數(shù),除以3余2,除以4余1,問這個(gè)數(shù)除以12余幾?

  解:除以3余2的數(shù)有:

  2, 5, 8, 11,14, 17, 20, 23….

  它們除以12的余數(shù)是:

  2,5,8,11,2,5,8,11,….

  除以4余1的數(shù)有:

  1, 5, 9, 13, 17, 21, 25, 29,….

  它們除以12的余數(shù)是:

  1, 5, 9, 1, 5, 9,….

  一個(gè)數(shù)除以12的余數(shù)是唯一的.上面兩行余數(shù)中,只有5是共同的,因此這個(gè)數(shù)除以12的余數(shù)是5.

  上面解法中,我們逐個(gè)列出被3除余2的整數(shù),又逐個(gè)列出被4除余1的整數(shù),然后逐個(gè)考慮被12除的余數(shù),找出兩者共同的余數(shù),就是被12除的余數(shù).這樣的列舉的辦法,在考慮的數(shù)不大時(shí),是很有用的,也是同學(xué)們最容易接受的.

  如果我們把例23的問題改變一下,不求被12除的余數(shù),而是求這個(gè)數(shù).很明顯,滿足條件的數(shù)是很多的,它是

  5+ 12×整數(shù),

  整數(shù)可以取0,1,2,…,無(wú)窮無(wú)盡.事實(shí)上,我們首先找出5后,注意到12是3與4的最小公倍數(shù),再加上12的整數(shù)倍,就都是滿足條件的數(shù).這樣就是把“除以3余2,除以4余1”兩個(gè)條件合并成“除以12余5”一個(gè)條件.《孫子算經(jīng)》提出的問題有三個(gè)條件,我們可以先把兩個(gè)條件合并成一個(gè).然后再與第三個(gè)條件合并,就可找到答案.

來(lái)源:無(wú)錫奧數(shù)網(wǎng)整理

      歡迎訪問奧數(shù)網(wǎng),您還可以在這里獲取百萬(wàn)真題,2023小升初我們一路相伴。>>[點(diǎn)擊查看]

分類

專題

類型

搜索

  • 歡迎掃描二維碼
    關(guān)注奧數(shù)網(wǎng)微信
    ID:aoshu_2003

  • 歡迎掃描二維碼
    關(guān)注中考網(wǎng)微信
    ID:zhongkao_com

本周新聞動(dòng)態(tài)

重點(diǎn)中學(xué)快訊

奧數(shù)關(guān)鍵詞

廣告合作請(qǐng)加微信:17310823356

廣告服務(wù) - 營(yíng)銷合作 - 友情鏈接 - 網(wǎng)站地圖 - 服務(wù)條款 - 誠(chéng)聘英才 - 問題反饋 - 手機(jī)版

京ICP備09042963號(hào)-15 京公網(wǎng)安備 11010802027854號(hào)

違法和不良信息舉報(bào)電話: 010-56762110 舉報(bào)郵箱:wzjubao@tal.com

奧數(shù)版權(quán)所有Copyright@2005-2021 www.xmglf.cn. All Rights Reserved.