學(xué)而思奧數(shù)天天練欄目每日精選中等、高等難度試題各一道。中難度試題適合一些有過(guò)思維基礎(chǔ)訓(xùn)練、考 題學(xué)習(xí)經(jīng)歷,并且?jiàn)W數(shù)成績(jī)中上的學(xué)生。高難度試題立足于杯賽真題、綜合應(yīng)用和加深各知識(shí)點(diǎn),適合一些志在競(jìng)賽中 奪取佳績(jī)的學(xué)生。
·本周試題由學(xué)而思奧數(shù)名師精選、解析,以保證試題質(zhì)量。
·每周末,我們將一周試題匯總為word版本試卷,您可下載打印或在線閱讀。
·每道題的答題時(shí)間不應(yīng)超過(guò)15分鐘。答案明日公布!
難度:★★★★
100到200之間不能被3整除的數(shù)之和是多少?
【答案】
考慮能被3整除的各數(shù)之和102+15+…+198然后,(100+101+102+…+200)-(102+105+…+198)=10200.
難度:★★★★★
把1988表示成28個(gè)連續(xù)偶數(shù)的和,那么其中最大的那個(gè)偶數(shù)是多少?
【答案】
28個(gè)偶數(shù)成14組,對(duì)稱的2個(gè)數(shù)是一組,即最小數(shù)和最大數(shù)是一組,每組和為: 1988÷14=142,最小數(shù)與最大數(shù)相差28-1=27個(gè)公差,即相差2×27=54, 這樣轉(zhuǎn)化為和差問(wèn)題,最大數(shù)為(142+54)÷2=98