【含義】這是古典的算術問題。已知籠子里雞、兔共有多少只和多少只腳,求雞、兔各有多少只的問題,叫做第一雞兔同籠問題。已知雞兔的總數和雞腳與兔腳的差,求雞、兔各是多少的問題叫做第二雞兔同籠問題。
【數量關系】第一雞兔同籠問題:
假設全都是雞,則有兔數=(實際腳數-2×雞兔總數)÷(4-2)
假設全都是兔,則有雞數=(4×雞兔總數-實際腳數)÷(4-2)
第二雞兔同籠問題:
假設全都是雞,則有兔數=(2×雞兔總數-雞與兔腳之差)÷(4+2)
假設全都是兔,則有雞數=(4×雞兔總數+雞與兔腳之差)÷(4+2)
【解題思路和方法】解答此類題目一般都用假設法,可以先假設都是雞,也可以假設都是兔。如果先假設都是雞,然后以兔換雞;如果先假設都是兔,然后以雞換兔。這類問題也叫置換問題。通過先假設,再置換,使問題得到解決。
例1長毛兔子蘆花雞,雞兔圈在一籠里。數數頭有三十五,腳數共有九十四。請你仔細算一算,多少兔子多少雞?
解假設35只全為兔,則雞數=(4×35-94)÷(4-2)=23(只)
兔數=35-23=12(只)
也可以先假設35只全為雞,則兔數=(94-2×35)÷(4-2)=12(只)
雞數=35-12=23(只)
答:有雞23只,有兔12只。
例22畝菠菜要施肥1千克,5畝白菜要施肥3千克,兩種菜共16畝,施肥9千克,求白菜有多少畝?
解此題實際上是改頭換面的“雞兔同籠”問題。“每畝菠菜施肥(1÷2)千克”與“每只雞有兩個腳”相對應,“每畝白菜施肥(3÷5)千克”與“每只兔有4只腳”相對應,“16畝”與“雞兔總數”相對應,“9千克”與“雞兔總腳數”相對應。假設16畝全都是菠菜,則有
白菜畝數=(9-1÷2×16)÷(3÷5-1÷2)=10(畝)
答:白菜地有10畝。
例3李老師用69元給學校買作業本和日記本共45本,作業本每本3.20元,日記本每本0.70元。問作業本和日記本各買了多少本?
解此題可以變通為“雞兔同籠”問題。假設45本全都是日記本,則有
作業本數=(69-0.70×45)÷(3.20-0.70)=15(本)
日記本數=45-15=30(本)
答:作業本有15本,日記本有30本。
點擊下一頁查看答案