2018濰坊小升初奧數知識整理(5)
來源:家長幫論壇濰坊站 文章作者:漾寧 2018-03-13 16:17:31

②對稱性:若a≡b(mod m),則b≡a(mod m);
③傳遞性:若a≡b(mod m),b≡c(mod m),則a≡ c(mod m);
④和差性:若a≡b(mod m),c≡d(mod m),則a+c≡b+d(mod m),a-c≡b-d(mod m);
⑤相乘性:若a≡ b(mod m),c≡d(mod m),則a×c≡ b×d(mod m);
⑥乘方性:若a≡b(mod m),則an≡bn(mod m);
⑦同倍性:若a≡ b(mod m),整數c,則a×c≡ b×c(mod m×c);
三、關于乘方的預備知識:
①若A=a×b,則MA=Ma×b=(Ma)b
②若B=c+d則MB=Mc+d=Mc×Md
四、被3、9、11除后的余數特征:
①一個自然數M,n表示M的各個數位上數字的和,則M≡n(mod 9)或(mod 3);
②一個自然數M,X表示M的各個奇數位上數字的和,Y表示M的各個偶數數位上數字的和,則M≡Y-X或M≡11-(X-Y)(mod 11);
五、費爾馬小定理:如果p是質數(素數),a是自然數,且a不能被p整除,則ap-1≡1(mod p)。
20.分數與百分數的應用
基本概念與性質:
分數:把單位"1"平均分成幾份,表示這樣的一份或幾份的數。
分數的性質:分數的分子和分母同時乘以或除以相同的數(0除外),分數的大小不變。
分數單位:把單位"1"平均分成幾份,表示這樣一份的數。
百分數:表示一個數是另一個數百分之幾的數。
常用方法:
①逆向思維方法:從題目提供條件的反方向(或結果)進行思考。
②對應思維方法:找出題目中具體的量與它所占的率的直接對應關系。
③轉化思維方法:把一類應用題轉化成另一類應用題進行解答。最常見的是轉換成比例和轉換成倍數關系;把不同的標準(在分數中一般指的是一倍量)下的分率轉化成同一條件下的分率。常見的處理方法是確定不同的標準為一倍量。
④假設思維方法:為了解題的方便,可以把題目中不相等的量假設成相等或者假設某種情況成立,計算出相應的結果,然后再進行調整,求出最后結果。
⑤量不變思維方法:在變化的各個量當中,總有一個量是不變的,不論其他量如何變化,而這個量是始終固定不變的。有以下三種情況:A、分量發生變化,總量不變。B、總量發生變化,但其中有的分量不變。C、總量和分量都發生變化,但分量之間的差量不變化。
⑥替換思維方法:用一種量代替另一種量,從而使數量關系單一化、量率關系明朗化。
⑦同倍率法:總量和分量之間按照同分率變化的規律進行處理。
⑧濃度配比法:一般應用于總量和分量都發生變化的狀況。
21.分數大小的比較
基本方法:
①通分分子法:使所有分數的分子相同,根據同分子分數大小和分母的關系比較。
②通分分母法:使所有分數的分母相同,根據同分母分數大小和分子的關系比較。
③基準數法:確定一個標準,使所有的分數都和它進行比較。
④分子和分母大小比較法:當分子和分母的差一定時,分子或分母越大的分數值越大。
⑤倍率比較法:當比較兩個分子或分母同時變化時分數的大小,除了運用以上方法外,可以用同倍率的變化關系比較分數的大小。(具體運用見同倍率變化規律)
⑥轉化比較方法:把所有分數轉化成小數(求出分數的值)后進行比較。
⑦倍數比較法:用一個數除以另一個數,結果得數和1進行比較。
⑧大小比較法:用一個分數減去另一個分數,得出的數和0比較。
⑨倒數比較法:利用倒數比較大小,然后確定原數的大小。
⑩基準數比較法:確定一個基準數,每一個數與基準數比較。
22.分數拆分
一、 將一個分數單位分解成兩個分數之和的公式:
① =+;
②=+(d為自然數);
23.完全平方數
完全平方數特征:
1. 末位數字只能是:0、1、4、5、6、9;反之不成立。
2. 除以3余0或余1;反之不成立。
3. 除以4余0或余1;反之不成立。
相關文章
- 小學1-6年級作文素材大全
- 全國小學升初中語數英三科試題匯總
- 小學1-6年級數學天天練
- 小學1-6年級奧數類型例題講解整理匯總
- 小學1-6年級奧數練習題整理匯總
- 小學1-6年級奧數知識點匯總
- 小學1-6年級語數英教案匯總
- 小學語數英試題資料大全
- 小學1-6年級語數英期末試題整理匯總
- 小學1-6年級語數英期中試題整理匯總
- 小學1-6年語數英單元試題整理匯總