小學數學故事:缺8數(2)
來源:網絡資源 文章作者:奧數網整理 2018-11-18 12:56:07

一以貫之當乘數超過81時,乘積將至少是十位數,但上述的各種現象依然存在,真是“吾道一以貫之”。隨便看幾個例子:
。1)乘數為9的倍數
12345679×243=2999999997,只要把乘積中最左邊的一個數2加到最右邊的7上,仍呈現“清一色”。
(2)乘數為3的倍數,但不是9的倍數
12345679×84=1037037036,只要把乘積中最左邊的一個數1加到最右邊的6上,又可看到“三位一體”現象。
。3)乘數為3k+1或3k+2型
12345679×98=1209876542,表面上看來,乘積中出現雷同的2,但據上所說,只要把乘積中最左邊的數1加到最右邊的2上去之后,所得數為209876543,是“缺1”數,而根據上面的“學說”可知,此時正好輪到1休息,結果與理論完全吻合。
走馬燈冬去春來,24個節氣仍然是立春、雨水、驚蟄……其次序完全不變,表現為周期性的重復。“缺8數”也有此種性質,但其乘數是相當奇異的。
實際上,當乘數為19時,其乘積將是234567901,像走馬燈一樣,原先居第二位的數2卻成了開路先鋒。深入的研究顯示,當乘數成一個公差等于9的算術級數時,出現“走馬燈”現象。例如:
12345679×28=345679012
12345679×37=456790123
回文結對攜手同行“缺8數”的“精細結構”引起研究者的濃厚興趣,人們偶然注意到:
12345679×4=49382716
12345679×5=61728395
前一式的積數顛倒過來讀(自右到左),不正好就是后一式的積數嗎?(但有微小的差異,即5代以4,而根據“輪休學說”,這正是題中的應有之義。)
這樣的“回文結對,攜手并進”現象,對13、14、22、23、31、32、40、41等各對乘數(每相鄰兩對乘數的對應公差均等于9)也應如此。例如:
12345679×67=827160493
12345679×68=839506172
遺傳因子“缺8數”還能“生兒育女”,這些后裔秉承其“遺傳因子”,完全承襲上面的這些特征,所以這個龐大家族的成員幾乎都同其始祖12345679具有同樣的本領。
例如,506172839是“缺8數”與41的乘積,所以它是一個衍生物。
我們看到,506172839×3=1518518517。
如前所述,“三位一體”模式又來到我們面前。
相關文章
- 小學1-6年級作文素材大全
- 全國小學升初中語數英三科試題匯總
- 小學1-6年級數學天天練
- 小學1-6年級奧數類型例題講解整理匯總
- 小學1-6年級奧數練習題整理匯總
- 小學1-6年級奧數知識點匯總
- 小學1-6年級語數英教案匯總
- 小學語數英試題資料大全
- 小學1-6年級語數英期末試題整理匯總
- 小學1-6年級語數英期中試題整理匯總
- 小學1-6年語數英單元試題整理匯總